博客
关于我
数字三角形问题(动态规划)
阅读量:801 次
发布时间:2019-03-25

本文共 940 字,大约阅读时间需要 3 分钟。

今天,我尝试解决了一个关于数字三角形的算法问题,目标是找到从三角形顶部到底层的路径,使得路径上的数字之和最大。这个过程让我深入了解了动态规划的应用,特别是在分治问题中的模拟思维方式。

在这个问题中,最优子结构在动态规划中发挥了重要作用。每一个节点到达底层的最优路径,都包含在它自身到达底层的最优子路径上。这意味着从上到下的每一个节点,其最优路径都必须经过它下方节点的最优路径选择。

状态转移方程为:t(i,j) = w(i,j) + max(t(i+1,j), t(i+1,j+1))。这意味着从第i层第j个节点到底层的最长路径长度,等于该节点的权值加上它下方两个节点中最大的那个节点的最长路径长度。这一状态转移方程确保了路径选择的最优性,因为它总是选择当前路径延伸时的最大收益。

在实现方面,这个问题可以通过从下向上的动态规划来解决。用一个二维数组存储数据,tri[i][j]表示第i层第j个节点的数据。初始时,二维数组中的值为题目给定的数字。接着,顺序地从第n-2层开始,计算每一层所有节点的最大路径值,这样确保在计算当前层的节点时,已经知道了下一层的计算结果。

代码实现可以如下:

int i, j;    for(i = n-2; i >= 0; i--){        for(j = 0; j <= i; j++){            a[i][j] += max(a[i+1][j], a[i+1][j+1]);        }    }    return a[0][0];}

这个代码的时间复杂度为O(n²),在n较大的情况下也能保持较好的性能。一开始可能会对代码中的轮动循环不太直观,但仔细分析后,其逻辑是清晰且巧妙的。

通过分析和实践,我理解到,动态规划的核心在于分解问题,将大问题分解为更小的子问题。每一个子问题都有自己的解,而这些子问题的解又可以组合起来得到最终的答案。在这个问题中,我们从底层向上逐步填充每一个节点的值,确保了每一步都选择了最大的可能值,从而保证了路径和的最大化。

总的来说,这个问题让我对动态规划在路径问题中的应用有了更深入的认识。理解这一点后,我能更自信地应用这种方法来解决类似的问题,甚至在更复杂的路径选择问题中寻找灵感。

转载地址:http://ukdyk.baihongyu.com/

你可能感兴趣的文章
Nginx配置如何一键生成
查看>>
Nginx配置实例-动静分离实例:搭建静态资源服务器
查看>>
Nginx配置实例-反向代理实例:根据访问的路径跳转到不同端口的服务中
查看>>
Nginx配置实例-反向代理实现浏览器请求Nginx跳转到服务器某页面
查看>>
Nginx配置实例-负载均衡实例:平均访问多台服务器
查看>>
Nginx配置文件nginx.conf中文详解(总结)
查看>>
Nginx配置自带的stub状态实现活动监控指标
查看>>
nginx配置详解、端口重定向和504
查看>>
Nginx配置负载均衡到后台网关集群
查看>>
Nginx配置限流,技能拉满!
查看>>
Nginx配置静态代理/静态资源映射时root与alias的区别,带前缀映射用alias
查看>>
Nginx面试三连问:Nginx如何工作?负载均衡策略有哪些?如何限流?
查看>>
Nginx:NginxConfig可视化配置工具安装
查看>>
ngModelController
查看>>
ngrok | 内网穿透,支持 HTTPS、国内访问、静态域名
查看>>
ngrok内网穿透可以实现资源共享吗?快解析更加简洁
查看>>
NHibernate学习[1]
查看>>
NHibernate异常:No persister for的解决办法
查看>>
NIFI1.21.0_java.net.SocketException:_Too many open files 打开的文件太多_实际操作---大数据之Nifi工作笔记0051
查看>>
NIFI1.21.0_Mysql到Mysql增量CDC同步中_日期类型_以及null数据同步处理补充---大数据之Nifi工作笔记0057
查看>>